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/ ABSTRACT

Because of the recent revival of interest in superconductivity, we

have felt that a pedagogical, yet concise review of the fundamental ideas of

the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity is timely.

We discuss the basic ideas of the BCS theory and list the formulae for the

thermodynamic quantities of this theory in the usual real-time

representation. We also represent these formulae in the alternate/

imaginary-time representation, which makes /hands-on numerical evaluation

of the thermodynamic quantities of interest readily accessible. Finally, we

point out the limitations of the BCS theory and describe some of its

proposed extensions for describing the behavior of some of the new,

unconventional superconductors.
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The discovery of "high-temperature" superconductivity in

La 2xBax CuO4 by J. Georg Bednorz and K. Alex Mtller (1) in late 1986 has

inspired intense experimental and theoretical work worldwide in all areas of

superconductivity. The study of superconductivity will therefore, no doubt

become a vital part of the education of the next generation of scientists.

With this perspective in mind, we shall attempt to provide a concise survey

of the important ideas of the Bardeen-Cooper-Schrieffer (BCS) theory of

superconductivity (2) as a first step towards understanding more advanced

concepts in superconductivity theory which have arisen with the advent of

the "high-temperature" and other unconventional superconducting materials.

In addition to providing a cursory development of the BCS theory of

superconductivity, we also give a compilation of formulae which describe the

thermodynamic properties of a BCS superconductor. Our emphasis here is on

enabling the reader to get to the problem-solving stage as directly as

possible. We refer the reader desiring a more rigorous treatment to the

various texts on superconductivity theory (3). A very useful resource of

references on various aspect of superconductivity can be found in

Ginzberg (4). We include this report with a discussion of the limitation of

the BCS theory and a survey of the extensions of it which have been proposed

to treat unconventional superconducting materials such as the heavy-fermion

and "high-T " superconductors.

BCS THERX

In this section we briefly discuss the key points of the BCS theory

following the treatment by Leggett (5). The important first step towards

formulating a theory of superconductivity was taken by Cooper (6). He

considered the idealized case of a pair of electrons in a metal, one of

momentum k and spin t and the other of momentum -k and spin 4, which at
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temperature T - 0 are coupled by the effective attractive interaction g < 0.

The coupled or bound electron pair (the Cooper pair) is of lower energy than

a separated electron pair, provided they interact in the presence of a

filled Fermi sea composed of the remaining N-2 electrons. That is the

momentum of the paired state, k, is greater than the Fermi momentum kF and

the Fermi sea blocks the electron pair from being scattered to states below

kF . In analogy to the single-pair case, one might think that an ensemble of

many such pairs might lower the energy still further. Bardeen, Cooper and

Schrieffer (2) showed that this is indeed the case; the new state so formed

is called the superconducting state.

The BCS ground state is usually referred to as a spin-singlet, even-

parity s-state. This simply means that the total spin S of the pair with

individual spin components +4 and - is S - 0, and that the relative

orbital angular momentum of the pair is 1 - 0. Superconducting states can

be formed for other values of I and, in analogy to atomic orbitals, are

labeled as p-wave, d-wave states, etc. We shall comment on these extensions

later.

The effective interaction g between the Cooper pairs must be

attractive to form the superconducting state, i.e, the coupling energy must

be greater than the Coulomb repulsion between the pair. The mechanism by

which electrons pair establishes the genre of the superconductor. BCS

superconductors are characterized by an electron-phonon mechanism. An

electron passing through the lattice of positive ions of a metal will draw

these ions toward it, i.e., polarize the lattice. Due to the large mass of

the ions compared to the electron, the lattice remains polarized for some

time after the electron has pa sed. Therefore, a second electron can be

attracted to the net positive charge and becomes effectively coupled to the
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first electron. Experimental measurements of quantities such as electrical

resistivity, thermal conductivity and the superconducting transition

temperature can be used to determine the strength of the electron-phonon

interaction.

We shall now briefly review the method of second quantization, which

will help us in describing the mathematics of superconductivity theory. A

non-interacting N-particle system is characterized by wave functions

(ri,s i ), i - 1,2,.. .N, with ri denoting positions and s. the spins of the

particles. The wave functions form a complete orthonormal basis set of

which the states of the system are composed. In the second-quantized

representation one does not specify the wave functions of the system of

particles; instead, the particle numbers nl,n 2 ... in these states are

specified as the system variables. The particle numbers are the eigenvalues

of the number operators i given by ni - ctci, where ct is the creation
i 2. ii i

operator for state i and ci is the corresponding annihilation operator. The

operator cj acting on a state i with n. particles in it, increases the

number of particles to (ni+l), whereas the operator c.i acting on the same

state decreases the number of particles to (n-1). If we are dealing with

fermions, such as electrons, the creation and annihilation operators obey
anticommutation relations such as cic. + cci 1, i(irij etc.,

reflecting the antisymmetry of the complete wave function of the system.

The antisymmetry of the total wave function puts restrictions on the

possible values of the particle numbers ni (i.e., the Pauli Exclusion

Principle).

We shall treat the BCS theory at T - 0 first (the ground-state

problem). Let us write the wave function of the system * as a product of

pair states given by
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- (uk ' vk cck t c - )io> (1)
k

Here 10> is the uncorrelated vacuum state, ct ct  is the creation operatorkt -kt

for the superconducting pair state, vk is the complex probability amplitude

for the electron pair state to be occupied, and uk is the complex

probability amplitude for the pair state to be unoccupied. The total

probability for a state at k must be i, i.e., lUk 2 + 1Vk 2 - 1. Suppose

initially that the pair state (kt,-ki) is occupied and that the state (kt,

-k4) is unoccupied where k' and k differ by momentum q. The probability

amplitude that the system is in the initial state is vkuk,. If there is a

scattering process in which the first state becomes unoccupied and the

second state becomes occupied, the probability amplitude for the transition

becomes UkVkVkUk,. Since eq. 1 implies that the superconducting state is a

superposition of states containing different numbers of particles, we must

work in the grand canonical ensemble for which the energy operator is

K -H - AN - (T+V) AN , (2)

with T C kckt cka N c t cc and V - gj ct, ct c- cka

k,a ka kk' c, P

Here A is the chemical potential, T is the kinetic energy, and V is the

potential energy containing the effective interaction g, discussed earlier.

It is assumed that g is independent of the frequency of vibration of the

ions of the lattice. The spin indices a and P can each be t or 4, and N is

the total number of electrons in the system which is fixed by the chemical

potential A. The characteristic energy of vibration of ions (the Debye
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energy WD ) is assumed to be much higher than any excitation energy of the

electrons being considered. If the wave function of the pair state has the

form given by eq. 1, then, intuitively, the average quantity <T-pN> is

- 2 kIvkI 2  (3)

k

The factor 2 arises because there are two electrons in the pair. The

quantity Ck is simply the kinetic energy of an electon measured with respect

to the chemical potential ( k - Ek - p). To get the average potential

energy <V>, we restrict ourselves to taking averages of pairs of operators

(mean-field approximation) such as

<c <c, c > kCkt> - (uk,vk,)(ukVk FF (4)kt -k'4~ -k4 -tk uv k'k

The non-zero value of the particular average given above differentiates the

superconducting state from the normal, metallic state, the averages of other

combinations of operator pairs being the same as in the normal state.

So finally, the average energy can be written as

<K>- 2 v1 2 _ Ig, FkFkq (5)

k k,q

It is convenient to express uk and vk in terms of a complex quantity Ak

defined by

vk - k/Dk and uk - ("+k)/Dk , (6)
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with E k - IkI2 + k2 ' and Dk - jIAkt2 + (E k+Ek)2, such that

22*

luk 12 + 2I 1 and Fk UkVk Ak/2Ek (7)

To find the ground-state energy, we minimize eq. 5 with respect to Fk. By

noting that the first term on the RHS of eq. 5 can be written as 2 AkdFk

k

(apart from a constant) (5), the required minimization gives

&k - II Fk . - 21gl Ak,/( 2Ek,) , with k' - k-q (8)

k' k'

Equation 8 is the famous BCS self-consistency relation, at T = 0, which

implicitly defines the complex gap function Ak. This equation, when solved

numerically, admits to a non-zero solution for the gap function Ak. In the

normal state the function Fk defined by eq. 7 is identically zero, implying

that Ak - 0. Thus Ak serves as the complex order parameter of the theory of

superconductivity. For the sake of simplicity we shall assume that Ak is

independent of k and drop its k-label. However, in the case where the gap

function can change with position, the k-label, as we shall see, is

important.

The physical interpretation of IA 2 , introduced in eq. 6, is that of

an energy gap. The relation Ek ' 1k+IAI2 implies that there is a gap, A, in

the energy spectrum of a superconductor. This gap appears because a single

pair cannot be broken without a finite expenditure of energy. Thus the

energy gap originates from the fact that there is a binding energy between

electrons in a Cooper pair. The elementary excitations of the ground pair

(GP) state are of two kinds. The first kind can be formed by breaking up
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the pair, i.e., only one of the two particles occupies the pair state.

Therefore, there is a single particle in the kt or in the -k4 state, each

having kinetic energy k (relative to A), but losing the pairing energy

(i.e., Fk - 0). This type of excitation will be called the broken pair (BP)

state. The second kind of excitation, called the excited pair (EP) state,

can be formed in a manner similar to eq. 1, the only difference being that

the new probability coefficients for this state are so chosen that this

state is higher in energy and is orthogonal to the state given by eq. 1.

The GP, BP and EP states are analogous to the bonding, nonbonding and

antibonding states of molecular hydrogen. It can be shown that the

excitation energies of a single BP state (there are two such states) and the

EP state relative to the ground pair (GP) state are (for details see Leggett

(5)) EBP- EGP - Ek  and EEP EGP - 2Ek

The concepts of the three states, GP, BP and EP, help us to generalize

the BCS theory to finite temperatures (T > 0). The quantities uk, vk, Ak,

Ek and Fk now become implicitly dependent on temperature. The probabilities

of occurrence of these states, are given by

-i -i -l
PGP " n 1 PBP " n exp(['Ek], PEP - n exp[-2fEk] (9)

with n - (1 + 2 exp[-PEk] + exp(-2#Eki) where P - I/T (using units in which

Boltzmann's constant is unity). The quantity Fk in eq. 7 is generalized to

Fk - UkVk(PGP-PEP) - (A/2Ek) tanh (#Ek/2 ) (10)

Notice that the BP state does not contribute to eq. 10, since the amplitude

factor uivk is zero for this state.
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THERMODYNAMIC PROPERTIES

The Real-Time Representation

The evaluation of thermodynamic quantities within BCS theory can be

performed in two ways. The first method, called the real-time

representation, follows along the lines of the theory outlined in the

previous section for T - 0. The second method, called the imaginary-time

representation, will be discussed in the next section. In the real-time

representation, the time dependence of creation and annihilation operators

involves exponential terms of the form exp(±iKt), where K is the energy

operator defined in eq. 2. If the wave vectors, k, are closely spaced,

forming a quasi-continuous spectrum near the Fermi surface, then we can

replace the sum over k by an integral over energy through the correspondence

D

-- N(O) d dk (11)

k -CD

where N(O) is the density of states (i.e., number of states per unit energy

interval) per single spin evaluated at the Fermi energy (i.e., p-O), and W D

is the Debye frequency. The self-consistency relation, eq. 8, can now be

generalized with the help of eq. 10 to give

Igi 2 Fk j A ~k [A/2Ek] tanh[Ek/2T] (12)

k D

where A - N(O)jgj. At the transition temperature (T - Tc), A - 0, so that

eq. 10 reduces to
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D

1 A D d k(2 ) I tanh( k/2Tc) , (13)
"WD

or A I-ln[rwD(27T c  (14)

where nrn is equal to Euler's constant (0.577). Rearranging eq. 14 yields

the transition temperature as

Tc - 1.135 w D exp(-1/A) (15)

At T - 0, A - A0 and eq. 12 can be directly solved to give

A- 0 df ( 2 + &O2)-40) (=." D/AO >> 1) (16)

Hence, A0 -
2wDexp(-l/A) . (17)

By eliminating A from eqs. 15 and 17 we get (A 0/Tc) - 1.76 which is a

universal constant of the BCS theory, being independent of the parameters of

a particular material such as the density of states and the coupling

constant, g. For temperatures 0 < T < T eq. 12 is solved by eliminating Ac

and wD through the use of eqs. 15 and 17 and through the use of the

transformation tanh(x/2) - 1 - 2exp(-x)/[l + exp(-x)]. Equation 12 is thus

divided into two terms, the latter being convergent (i.e., integrable from

the limits 0 to -). We have found that a 15-point Gauss-Laguerre

quadrature (7) can be readily applied to solve eq. 12, and is particularly

accurate at low temperatures where wD/T >> 1. Numerical solutions of eq. 12
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become quite inaccurate, however, near T since one has to determine a smallC

quantity, A, by subtracting two large numbers. The imaginary-time-

representation treatment avoids this problem and is much simpler to use in

practice.

Having obtained the temperature-dependent gap function A(T), as given

above, we can now calculate the free energy difference F - F < 0 of thes n

superconducting state relative to the normal state. Noting that <V> -

-A F , we can write (5)

k

Fs Fn - <V> + [2A Fk - 2 Fk] - (AFk - 2 f Fk dA) (18)

k k

ID fA -2 2 22- N(O) - N(O) , k xdx(x + k tanhC/x + /2T)

D

-21N(O) Al - 2T N(O) dk ln[cosh(Ek/2T)/cosh( k/ 2T)]
"D

Eq,ation 18 also gives the value of the thermodynamic critical field H ,

since F - F - H 2 /(8w). The entropy of the superconducting state at
n S

temperature T is given by

Ss - - (PGP2nPGP + 2 PBP nPBP + PEP nPEP) (19)

k

- N(O) fD d k {E[l - tanh(Ek/2T)]/T + 21n(l + exp(-Ek/T)]
_W D
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The specific heat at constant volume, C , of the superconductor is easily

calculated from eq. 19 by the formula

dS D dE BEk
Cs - T( -) - N(0) d Ik '1 - (E /T J (20)

"WD

It is useful to compare Cs(T) above with Cn(Tc) the specific heat of the

normal state at T . Since C n(T) - 7T, where 7 - 2i N(0)/3 is the Sommerfeld

constant, we have

C0s(T) 2-1 3 2 ' _,n
7T- - 3(22r )(A/T) (T /T)2 (-1)n(n+l)[K3 (x) + 3Kl(x)]

n-0

- 3(2r ) ( dA -) Y(T) (21)
c

with Y(T) - fd k(1/2T) sech2 Ek/2T) - i -2 , (22)

2 2

where x - (n+l)A/T and - [1 - (T- )/(2A)]n d

In obtaining eq. 21 we have used the integral representation of the modified

Bessel function K V (x) and the identity sech 2(x/2) - 4 (-l)n(n+l)

n-0
x exp[-(n+l)x]. The temperature-dependent quantity Y(T) is called the

Yosida function and gives the spin susceptibility of the superconductor.

The specific form of Y(T) in eq. 22 was obtained from the discussion on the

electromagnetic properties of the superconducting state in the original BCS
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paper (2); this term was neglected in (8). The low- and high-temperature

limits of these quantities are discussed in the Appendix; numerical values

of the thermodynamic quantities over the entire temperature range are given

in Rickayzen (9).

The Imaginary-Time ReDresentation

In contrast to the previous section, one can think of temperature as

an "imaginary time" r by writing the Boltzmann factor as exp(-/T) -

exp(ir) with r - i/T, where r is defined over a range from 0 to I/T. The

variable conjugate to r is called the Matsubara frequency, Wn . In the

imaginary-time representation all thermal averages are expanded in a Fourier

series in wn (in contrast to the Fourier integrals of the previous section).

The antisymmetry of the fermion wavefunction imposes the constraint that W

- wT(2n+l) with n - 0, ±1, ±2..... We can express the formulae of the

previous section as a series in wn very elegantly by the method of analytic

continuation discussed in (10).
-I

Let f(w) - [1 + exp(w/T)] be the Fermi distribution function for a

state of energy w at temperature T, with poles located at w - +iw . Suppose' n

we wish to evaluate the integral f dw f(w) F(w) around a contour which

encloses only the poles of f(w) but not the poles of the arbitrary function

F(w). Then it can be shown that

f dw f(w) F(w) - - 2xiT F(iw) (23)

n

As a practical application of eq. 23 consider the self-consistency equation,
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eq. 12. Since the integrand is an even function of k' we can replace

jw d k by 2 ] d k' By changing the itrtegration variable from k to Ek one
"W D 0

obtains

2

1 - f J d < (E2_-1 2)- , tanh(Ek/2T) (24)
0 E

We can write tanh(Ek/2T) - f(Ek)[exp(Ek/T) - 1] and use eq. 23 [note that

exp(iw n/T) - -1] to get

D

I - 2rAT 2 +1A1 2 F w - irT(2n+l) (25)n n

w >0
n

At T - A- 0 so that we get from eq. 25

nD

1 - l1/(n + 0.5) , n - NINT[ND(2rTc ) -I  0.5] (26)

n-0

Here NINT stands for the nearest integral part of the quantity inside the

square brackets. As - , the RHS of eq. 26 is logarithmically divergent,

hence the need to truncate the sum at the Debye number - associated with

the Debye frequency wD at Tc . For large n, the series on the RHS of eq. 26

can be evaluated (7) and precisely gives the familiar eq. 14. In order to

solve for A(T) as a function of temperature, we note that eq. 26 can be

rewritten as
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n D

- n(t) + /(n+0.5) t - T/T c  (27)

n-O

Eliminating A from eq. 21 and 27, we obtain the self-consistency condition

n D

Int + 2 [(n+0.5) 1 - 2wT(2 + 1&2)] - 0 (28)

n-O

Equation 28 is clearly convergent as nD - w, so that the upper limit in the

sum can be extended to infinity if needed. We find that A(T) can be

calculated accurate to five decimal places with nD - 20 near Tc and with nD

- 150 at low temperatures. To solve eq. 28 numerically, we supply an

initial guess for A(T) at a given temperature, test whether it satisfies eq.

25 and update it by the method of golden section (11). The procedure is

repeated until the desired accuracy is obtained. The empirical relation

A2(t) - 2 l - a(t)tq (t ) expIb(t)(t-l)/t]J (29)

with

a(t) - [1.538 + 1.077t 2(t-l.5)] , q(t) - [2 + 2t 2(t-l.5)] 
I

and

b(t) - [0.5669 + 0.2468t 3 3 3 (t-l.3)]-l
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where t - T/T c, provides a good initial guess, as well as yielding proper

values for the gap and its temperature derivative at the limits t - 0 and t

-1.

In order to find FS - Fn in the imaginary-time representation, eq.

18 is convenient, since the tanh(Ek/2T) function can be expressed in terms

of f(Ek), as before. Carrying out the analytic continuation first using eq.

23 and then performing the integration with respect to A, we get

nD

F~ -Fs - N(O) {A 2 I() + 4wr T [(JA 12 + -2 ~ 2 (2w )l]}

n-0

(30)

Again, we see that as nD - (i.e., w n c), the sum inside the square

bracket is convergent. The Matsubara representation of the entropy S and

the specific heat C (at constant volume) are related to the free energys
-dS

through S -(A), Cs - T( ) and can be readily obtained from eq. 30 by

noting that both A and w depend on temperature. In practice, however, we

have found that F - F s, S and C are most easily obtained by firstn s s

evaluating the free energy through eq. 30 followed by single and double

numerical differentiation of F - F to obtain the entropy and the specific
n s

heat (apart from the factors in front).

The formulae given in this section provide an easy numerical scheme to

calculate the gap and thermodynamic quantities for a BCS superconductor and

should be useful for students and teachers alike. We would also like to

point out to those who are interested in more advanced topics that the

imaginary-time method can be extended to handle more complex situations,
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such as the evaluation of position-dependent energy gaps (12) which occur

when a bulk superconductor is in contact with a thin film of normal metal

(called a proximity junction) or in situations in which an external current

is passed through such a junction (13).

Limitations and Extensions

The BCS theory is based on a simple intuitive model for the effective

attractive interaction between electrons, given in eq. 2. In that equation

it was assumed that the interaction potential is attractive for wave vectors

k which lie within a small spread of ±Ak around the Fermi wave vector kF and

that the potential is > 0 otherwise. In addition, the Debye energy WD is

assumed to be much larger than the energy k of the electrons. This

approximation is called the "weak-coupling" limit, and many superconductors

fall into this category. However, there are superconductors for which the

electron-phonon coupling is strong, requiring the BCS theory to be modified.

This is done in the "strong-coupling" theory of Eliashberg, which utilizes

the fact that the electron-phonon interaction is not instantaneous, but

rather is delayed in time (retardation). For details of this theory we

refer the reader to the book by Mahan (14). Other applications and

extensions of the BCS ideas can be found in the excellent two-volume set

edited by R. D. Parks (15). It should be mentioned here that a strong-

coupling, phonon-mediated model has been proposed to explain the properties

of the new "high-Tc" superconductors (16). However, this model deviates

from BCS theory in that the primary charge carriers are bosons (integral

spin) rather than fermions.

The BCS theory is a microscopic theory which starts from the basic

idea of an attractive interaction between electrons in the presence of a
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Fermi sea. Before the microscopic theory was conceived, macroscopic

theories based on physical intuition were developed. The most notable and

successful of these phenomenological theories is due to Ginzburg and

Landau (3). This theory asserts that there exists a complex order parameter

0(r) (not to be confused with eq. 1) whose square modulus 10(r) 12 represents

the local density of the superconducting electrons. The order parameter

O(r) is zero in the normal state (T > T ) and is non-zero in the

superconducting state (T < T c). Ginzburg and Landau assumed that the free

energy of a superconductor can be expanded in powers of O(r) and its

gradient VO(r); symmetry limits the kind of terms in the expansion. It was

shown by Gorkov that the BCS theory of superconductivity gives a free-energy

expansion which is equivalent to the Ginzburg-Landau equation at

temperatures close to T .c

As mentioned earlier, the BCS theory assumes that the bound electron

pairs are in a spin-singlet (S-0), even-parity, s-wave (2-0) state.

Extensions of this theory have been proposed where this limitation has been

lifted. For a triplet state (S-i), the spins of the electron pair have the

same magnetic-moment projections (i.e., the spin wave function is

symwetric), and antisymmetry of the total pair wave function requires that

parity of its angular momentum part be odd (for example, 2-1). A triplet p-

wave state would exhibit magnetic behavior and has a richer phase diagram

than an s-wave state. It has been proposed recently that p-wave pairing

might occur in "heavy-fermion" materials (17). Liquid 3He exhibits a

superfluid transition at extremely low temperatures (at about 3 mK) which is

associated with triplet p-wave pairing. The theory of superfluidity in 3He

can be described as an extension of the ideas of Balian and Werthamer (14)

and is formally similar to the BCS theory.
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As another example of the extension of the ideas of the BCS theory,

consider the spin-singlet, d-wave (2-2) pair state, which also has been

proposed for the "heavy-fermion" superconductors. The present authors have

developed a systematic symmetry analysis to obtain a Ginzburg-Landau free-

energy expansion for these even-parity superconducting states (18,19) which

enables the calculations of thermodynamic quantities for the heavy-fermion

and other unconventional superconductors. A preliminary application of this

approach to model the effect of anisotropy in the new "high-temperature"

superconductors has also been pursued with some measure of success (20).

The extension of the formal BCS theory to model these materials has,

however, been met with criticism. Two major premises of BCS theory do not

appear valid for these materials. First, the major pairing mechanism is

though to arise from a magnetic interaction rather than a phonon interaction

(21-24). This effect could be incorporated into a BCS-like theory through

the introduction of an effective, magnetic coupling constant gm > 0 if it

were not for the short range of this interaction. It should be recalled

that the BCS-theory is a mean-field theory, the second major premise, and

consequently it ignores the local variations in the magnetic interaction

which appear to be important in the "high-T " superonductors. However, inc

spite of its limitations, BCS theory continues to be the standard in the

field and should be understood before other, more elaborate theories can be

studied.

VI. CONCLUIONSkL

In this paper we have attempted to provide a concise reference source

on the basic concepts and computational methods of BCS theory of

superconductivity. It is our hope that it will provide the incentive for,
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and be helpful in the introduction of BCS theory into the advanced

undergraduate or first-year graduate curriculum. The material on

thermodynamic properties are intended to provide the reader with the

important analytical formulae describing the thermodynamic properties of the

superconducting state as well as supply a means of access to the more

advanced literature. The simplicity of performing calculations in the

imaginary-time formalism should be a valuable aid to getting "hands-on"

experience in BCS theory.

APPENDIX

Here we present the limiting forms of the thermodynamic functions for

a superconductor with gap A(T) at low temperature (T - 0) and at high

temperature (T = T c). We also give some additional mathematical formulae

which serve as useful checks on the numerical results obtained from real-

time representation formulae.

Case (1) T 0

As T - 0, the order parameter A = A0 and is approximately independent

of T. The leading deviation from A0 is exponential in nature (12),

indicating the existence of an energy gap of the form

A 2  [1 - 8i/A 0 exp(-A 0/T)] (Al)

Similarly (12),

F - F ( 2/3)T2N(O) - N(o)[IA2 + .2rA 3T exp(-Ao/T)] (A2)
a n 20
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Ss  2N(O)(2ffA3/T) exp(-A0/T) (A3)

and

C s(T)/(7T ) - C s(T)/C n(T )

(6/ir 2)( /2)(A 0/T) 3(Ao/T c ) exp(-A 0 /T) (A4)

with r - 2 N(O)/3.

The exponential term in the specific heat is again indicative of an

energy gap in the excitation spectrum. Equation A4 can be easily obtained

from eq. 21 by noting that the temperature derivatives are zero and that we

can use the asymptotic form of the modified Bessel function (since A0/T

K V(x) - [w/(2x)] exp(-x) (AS)

Case (2) T = T
C

Close to Tco A(T) is vanishingly small and serves as a small expansion

parameter. Noting that near T , Y(t) - 1 - 2(l-t), we get

A2  8w2 17 (3)]1I T 2 (1-t) , (3) - 1.202 , (A6)
c

F89 F n 4 N(0) (7 (3)] -1(*T d) (1-t) 2 (A7)
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Ss - -8N(O)[7 (3)] I (rT C) 2(l-t) + S n (A8)

where S - (2w2 /3)N(O) T,n

and

Cs(TC) 1 1
1.426 (A9)C n(T C ) 7*(3)

Note that the RHS of eq. A9 gives the jump in the specific heat at T . TheC

term -1 on the LHS of eq. A9, which comes from the nonsuperconductor

contribution, is obtained by using the asymptotic form

K (x) - V1 ( 2)

X +02 x

-2 2

and the sum (_1)n (n+l) 2  2 /12

n-O
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